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Introduction [1]

This book introduces Cray XT users to MPI I/O. It defines the basic components
of the I/O system, explains various I/O techniques and their performance pros and
cons, and describes optimization techniques and their use. The intended audience
is application developers. Prerequisite knowledge is a familiarity with MPI, the
I/O process, and basic Cray XT terminology. A brief introduction to the Parallel
HDF5 (Hierarchical Data Format) and NetCDF-4 (Network Common Data Form) I/O
libraries is also given. These libraries are layered on top of MPI I/O and make use of
many of the MPI I/O features.

For many applications, I/O is a bottleneck that limits scalability. Write operations
often do not perform well because an application's processes do not write data to
Lustre in an efficient manner, resulting in file contention and reduced parallelism.
This book focuses on write operations. Output files tend to be larger than input files,
write operations tend to have more performance bottlenecks than reads, and read
operations are usually restricted to application startup, whereas writing typically takes
place throughout application execution.

The intent of this book is to provide a basic understanding of how write operations
work in a Cray XT system, explain the causes of poor write performance, and
encourage application developers to modernize I/O techniques through the use of MPI
I/O or other libraries layered on top of MPI I/O. Subsequent revisions to this book
will address read performance and give usage guidelines based on reader feedback
and ongoing research.
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Cray XT Parallel I/O [2]

In this chapter, we first describe some basics of parallel I/O on Cray XT
systems—basics that apply to any I/O interface used in an MPI application—and
then describe the I/O interfaces.

2.1 Overview of the File System Architecture
Figure 1 shows a simplified view of parallel I/O, highlighting only the components
appropriate for this book. Parallel I/O is the simultaneous transfer of data by multiple
processes between compute node memory and data files on disks. Data transfers to
and from disks are managed by Lustre, the underlying parallel file system currently
used on Cray XT systems.

A single Lustre file system consists of one metadata server (MDS) and one or more
object storage servers (OSSs). The MDS opens and closes files and stores directory
and file metadata such as file ownership, timestamps, and access permissions on the
metadata target (MDT). Once a file is created, write operations take place directly
between compute node processes (P0, P1, ...) and Lustre object storage targets
(OSTs), going through the OSSs and bypassing the MDS. For read operations, file
data flows from the OSTs to memory. Each OST and MDT maps to a distinct subset
of the RAID devices.

Note: The meaning of the term OST can be confusing because it is sometimes
stated that there are OSTs "on" an OSS, but this is not the case. The OSS is the
physical node. OSTs are mount points on an OSSs. Throughout this book, we
refer to OSTs as the physical destination of application data in a file. MDTs are
the physical destination of application file metadata.

S–2490–40 9
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Figure 1. Overview of Parallel I/O
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2.2 Physical and Logical Views of a File
Physically, a file consists of data distributed across OSTs. Figure 2 shows an example
of one file that is spread across four OSTs, in five distinct pieces. The next section
will describe how the size and distribution of these pieces is determined and why you
need to know about this.

Figure 2. A Physical View of a File

OST2 OST3OST0 OST1

File

Logically, a file is a linear sequence of bytes. Continuing with the example shown in
Figure 3, shows the five pieces lined up.

Figure 3. A Logical View of a File

File

Except for performance reasons, you do not need to know how and where the bytes
are arranged physically as long as your application can reliably access the bytes. For
performance reasons, the distribution of the file across OSTs does matter because
of a process called file striping.
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Cray XT Parallel I/O [2]

2.3 File Striping
The logical view of a file as a linear sequence of bytes is valid regardless of the file
system used. However, on Lustre systems it is important to understand one aspect of
the physical view of a file—file striping—because the effective use of striping can
significantly improve I/O performance.

File striping is the process of physically separating a file's linear sequence of bytes
into units called "stripes" so the I/O hardware can simultaneously write or read
different stripes.

By default, Lustre stripes files across multiple disks (that is, OSTs). The number of
OSTs across which a file is written is the stripe count. The number of bytes written
on one OST before cycling to the next is the stripe size. To improve I/O performance,
you may need to set the stripe count or stripe size to a value other than the default
(see Setting the Stripe Count and Stripe Size on page 14).

You may also need to know how many OSTs are installed on your system because, in
general, the more processes writing in parallel to a file, the better the I/O throughput.

Note: You cannot set the stripe count to greater than the number of OSTs present
on your system. Alternatively, at some sites, the number of OSTs present may
exceed the Lustre limit for the stripe count for a single file. The current Lustre
stripe count limit is 160.

Figure 4 shows the example from the previous section, with the striping information
added. In this example, the stripe count is 4 and the stripe size is 1 MiB.

Figure 4. Physical and Logical Views of Striping

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB 5 MiB

Stripe 1 Stripe 2 Stripe 3 Stripe 4

OST2

Stripe 2

OST3

Stripe 3

OST1

Stripe 1

OST0

Stripes 0,4

Stripe 1

Note: The stripe count of a file is the same as the number of OSTs assigned to the
file. The total number of stripes in the file will be more than the stripe count if the
number of bytes in the file is greater than the stripe count times the stripe size.

When an application accesses bytes in the file, it does so from the logical view of
a starting offset into the file and the number of bytes beyond the starting offset.
Application code does not directly reference OSTs or physical I/O blocks.
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The previous example shows how a file is striped across the OSTs but does not show
I/O proceeding in parallel. Figure 5 shows the physical view of an example of four
processes writing in parallel to a single shared file that is striped across four OSTs.
The stripe size is 1 MiB. In this example, each process writes one contiguous record
to distinct, non-overlapping regions of the file and of different lengths, with no gaps
between records. The writes are done as follows:

• P0 writes a 600,000-byte record, starting at offset 0 to OST0.

• P1 writes a 1,800,000-byte record, starting at offset 600,000 to OSTs 0-2.

• P2 writes a 1,200,000-byte record, starting at offset 2,400,000 to OSTs 2 and 3.

• P3 writes a 1,400,000-byte record, starting at offset 3,600,000 to OSTs 3 and 0.

Figure 5. A Physical View of Striping

OST1

P3P1 P2P0

OST0 OST2 OST3

The records from processes 0-3 are each split into pieces by the Lustre software so
that each piece gets sent to the appropriate destination OST: OST0 is simultaneously
receiving data from processes 0, 1 and 3; OST2 is simultaneously receiving data from
processes 1 and 2; and OST3 is simultaneously receiving data from processes 2 and 3.

When there are four OSTs receiving data in parallel, I/O performance can increase
significantly—up to four times compared to all processes writing to one OST. Actual
performance is limited by the effects of "stripe-aligned records" and "extent lock
contention." Because the record lengths are not exact multiples of the stripe size and
the starting and ending offsets are not exactly on stripe boundaries, the records in
this example are not "stripe-aligned." And because some OSTs are simultaneously
receiving data from more than one process, an extent lock must be put on a region
of the file when more than one process is trying to write to the same disk block
(the smallest writable unit) at a time. The processes are thus contending for the
lock, which serializes access to these blocks and thus reduces overall parallel I/O
performance.
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Cray XT Parallel I/O [2]

The logical view of the application is normally presented in terms of file offsets and
record lengths. Figure 6 shows the logical view of the example shown in Figure 5.
The resulting file is a contiguous sequence of 5,000,000 bytes with no gaps, which is
a little less than five full stripes.

Figure 6. A Logical View of Striping

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB

P3P1 P2P0

5 MiB

Subsequent chapters will describe I/O interfaces that deliver good I/O performance
without the application having to deal with physical layout of data on the OSTs or
even physical offsets into the file. These interfaces allow you to think more in terms
of the data models of the application and less in terms of I/O details.

2.3.1 Determining the Number of File System OSTs

To determine how many OSTs are on your file system, use the Lustre lfs df
-h command. (The -h option presents the data in easy-to-understand units. This
command also lists the MDT and lists the OSTs with indices starting with 0.)

Example 1. Determining the number of file system OSTs

% lfs df -h
UUID bytes Used Available Use% Mounted on
nid00008_mds_UUID 170.9G 1.2G 159.9G 0% /lus/nid00008[MDT:0]
ost0_UUID 1.0T 472.6G 545.7G 44% /lus/nid00008[OST:0]
ost1_UUID 1.0T 418.4G 599.8G 39% /lus/nid00008[OST:1]
ost2_UUID 1.0T 468.8G 549.5G 43% /lus/nid00008[OST:2]
ost3_UUID 1.0T 431.0G 587.3G 40% /lus/nid00008[OST:3]
ost4_UUID 1.0T 449.0G 569.2G 41% /lus/nid00008[OST:4]
ost5_UUID 1.0T 465.8G 552.5G 43% /lus/nid00008[OST:5]
ost6_UUID 1.0T 475.3G 542.9G 44% /lus/nid00008[OST:6]
ost7_UUID 1.0T 466.0G 552.2G 43% /lus/nid00008[OST:7]

filesystem summary: 8.4T 3.6T 4.4T 42% /lus/nid00008

In this example, there are eight OSTs mounted on file system /lus/nid00008.

S–2490–40 13
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2.3.2 Determining the Stripe Count and Stripe Size

To determine the system default stripe count and stripe size, use the lfs
getstripe command on a newly created Lustre file system directory.

Example 2. Determining the stripe count and stripe size

% cd /lus/nid00008/user123
% mkdir newdir
% lfs getstripe newdir
OBDS:
0: ost0_UUID ACTIVE
1: ost1_UUID ACTIVE
2: ost2_UUID ACTIVE
3: ost3_UUID ACTIVE
4: ost4_UUID ACTIVE
5: ost5_UUID ACTIVE
6: ost6_UUID ACTIVE
7: ost7_UUID ACTIVE
newdir
(Default) stripe_count: 2 stripe_size: 1048576 stripe_offset: 0

In this example, the default stripe count is 2 and the default stripe size is 1,048,576
bytes (1 MiB).

Note: The system defaults are set by the system administrator when the file system
is configured.

2.3.3 Setting the Stripe Count and Stripe Size

To set the stripe count and stripe size for a file, use the lfs setstripe command
on the parent directory before the file is created.

Example 3. Setting the stripe count and stripe size

% cd /lus/nid00008/user123
% mkdir newdir
% lfs setstripe -c 8 -s 1M newdir

The above example sets the default stripe count to 8 and the stripe size to 1 MiB for
all files subsequently created in newdir. By default, any file created in this directory
will inherit the directory's stripe count and stripe size. The lfs command can also
be used to create a zero length file with a specified stripe count and stripe size, but
setting information on the parent directory is the more common option. See the
lfs(1) man page for more information.

Note: There are other ways to set the stripe count and stripe size using the MPI I/O
interface; see MPI I/O Optimization Hints on page 38.

14 S–2490–40
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2.3.4 Guidelines for File Striping

The following guidelines for setting the stripe count and stripe size are relevant for
files that are many times larger than the stripe size. For much smaller files, the I/O
time is probably not a significant part of the total application time.

• For single-shared-file I/O, striping across multiple OSTs usually improves
performance significantly. When the number of processes is less than the number
of OSTs available, set the stripe count to the number of processes. When the
number of processes is greater than or equal to the number of OSTs available,
set the stripe count to the number of OSTs available, or to the maximum stripe
count allowed by Lustre (currently 160).

For more information about single-shared-file I/O, see Single Shared File: One
Writes on page 22, Single Shared File: All Write on page 23, and Single Shared
File: Subset Writes on page 24. For details about I/O performance, see IOR
Writes on page 44.

• For one-file-per-process I/O with more processes running than the number of
OSTs on the file system, striping across multiple OSTs usually does not help
performance because multiple processes will compete for the same set of OSTs.
In this case, set the stripe count to 1.

On the other hand, if the number of processes is less than half the number of
OSTs available, setting the stripe count so that most or all of the OSTs are being
used by the entire application can help performance.

For more information about one-file-per-process I/O, see One File per Process:
All Write on page 21.

• In general, it is not necessary to change the default stripe size. Empirical evidence
indicates that in most cases changing the default stripe size does not improve I/O
performance. Throughout this book, we assume a stripe size of 1 MiB.

2.4 I/O Interfaces
There are four software interfaces to the Cray XT I/O system: POSIX I/O, MPI I/O,
HDF5 I/O, and NetCDF-4 I/O.

As shown in Figure 7, the interfaces are layered. All MPI applications use one or
more of the I/O interfaces and the Lustre parallel file system to transfer data between
compute node memory and disk files. Cray recommends that you use one interface
throughout an application. At a minimum, use one interface for I/O to and from a
single file.

S–2490–40 15
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Figure 7. MPI I/O Software Layers
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2.4.1 POSIX I/O Interface

A POSIX I/O file is simply a sequence of bytes. You use the POSIX I/O interface
to transfer contiguous regions of bytes between the file and memory or to transfer
noncontiguous regions of bytes from memory to a file.

MPI applications can perform POSIX I/O directly through the use of POSIX I/O
calls or indirectly through C, C++, or Fortran I/O functions that are translated into
POSIX calls.

The basic POSIX I/O calls are read(), which reads contiguous data from a file to
memory, and write(), which writes contiguous data from memory to a file. The
readv() call transfers contiguous data in a file to noncontiguous data in memory.
The writev() call transfers noncontiguous data in memory to contiguous data
in a file.

2.4.1.1 POSIX Benefits

POSIX I/O gives you full, low-level control of I/O operations. It is the standard
interface for serial I/O on most systems. However, there is little in the interface that
inherently supports parallel I/O. It is your responsibility to manage most aspects
of parallel I/O, including the calculation of explicit offsets. POSIX I/O does not
support collective access to files (that is, the simultaneous access to data by a group
of processes). Therefore, the application must explicitly coordinate collective
functions. In addition, if complex data structures are written to a file, you must break
noncontiguous data into separate contiguous segments and make separate calls for
each segment.

If I/O performance is important for an application using POSIX I/O, you may need
to modify the application to move data between processes to accommodate process
counts and the specifics of the parallel file system. An application tailored in this
manner may not be very portable to environments where the application is run with
different process counts and/or different file systems.
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2.4.1.2 References

The POSIX I/O interface is documented in the System Interfaces volume of
The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition
(http://www.opengroup.org/onlinepubs/009695399/).

2.4.2 MPI I/O Interface

The MPI I/O interface provides two types of I/O calls: independent I/O and collective
I/O.

Independent MPI I/O calls are referred to as independent because the calls can
be made by any subset of the processes participating in I/O, with each process
handling its own I/O independently. The basic independent MPI I/O calls are
MPI_File_read() and MPI_File_write().

These calls are similar to the MPI message passing send and receive calls, as shown
in the syntax of the MPI_File_write() and MPI_Send() calls:

int MPI_File_write(MPI_File mpi_fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

Collective MPI I/O calls are referred to as collective because I/O calls must be made
by all processes participating in a particular I/O sequence. The basic collective
calls are MPI_File_write_all() and MPI_File_read_all(). The only
syntactic difference between independent and collective calls is the addition of
all to the name of collective calls, as shown in the MPI_File_write() and
MPI_File_write_all() calls:

int MPI_File_write(MPI_File mpi_fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all(MPI_File mpi_fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

The _all portion of the call indicates that all processes in the group specified by the
communicator passed to MPI_File_open() will call this function.

An MPI I/O file is an ordered collection of typed data items. You can define data
models that are natural to your application through the use of typed data items. The
MPI I/O interface provides calls for constructing and committing datatypes. After
you commit a datatype, use it in a MPI_File_set_view() call.

With MPI I/O, each process has its own view of the file, relieving you of the burden
of calculating explicit offsets for each I/O operation. Every process that is sharing the
file must call MPI_File_set_view() to define its portion of the file. For an
example program showing how to use datatypes and MPI_File_set_view(), see
Example 4. Once the view is set, MPI I/O maintains the file offset for each process.
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For both independent I/O and collective I/O, there are individual-file-pointer
functions and explicit-offset functions, providing flexibility in programming
paradigms.

2.4.2.1 MPI I/O Benefits

MPI I/O provides the following benefits for parallel I/O applications:

• A higher level of data abstraction than POSIX I/O. With MPI-IO, you can define
complex data patterns for parallel writes, which allows Lustre and the MPI-IO
library to optimize performance.

• Support of data coherence and atomicity

• Optimization of I/O functions

Independent MPI I/O calls are similar to POSIX I/O calls, with two important
differences. POSIX I/O calls support only contiguous segments of data in files,
but independent MPI I/O calls support derived data types, which can contain
noncontiguous data and nonuniform strides.

Many parallel applications lend themselves naturally to collective I/O. When all
processes participating in a sequence of parallel computations need to read and/or
write data at the same time, they can do so efficiently by using collective MPI I/O
calls.

With respect to performance, independent MPI I/O is very similar to POSIX
I/O. With collective MPI I/O, however, the MPI I/O layer coordinates the I/O of
participating processes, allowing the library to do optimizations that could not be
done with independent I/O. MPI I/O can do some optimizations for independent I/O,
but all of these and more can also be done for collective MPI I/O, so we will focus on
collective MPI I/O, pointing out distinctions where appropriate.

2.4.2.2 References

• The MPI I/O interface is documented in Chapter 9 of the
MPI-2.0 Standard (Chapter 13 of the 2.2 Standard). See
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html and
http://www.mpi-forum.org/.

• MPI: The Complete Reference (2-volume set) by Marc Snir, William Gropp, and
Bill Nitzberg.

• Using MPI - 2nd Edition: Portable Parallel Programming with the Message
Passing Interface (Scientific and Engineering Computation) by William Gropp,
Ewing Lusk, and Anthony Skjellum.

• Parallel I/O for High Performance Computing by John M. May.
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2.4.3 HDF5 I/O Interface

HDF5 is a platform-independent I/O interface that simplifies the modeling, viewing,
and analysis of complex data objects. HDF5 provides a higher level of data
abstraction than MPI I/O.

The basic HDF5 I/O calls are H5Dread() and H5Dwrite().

2.4.3.1 HDF5 Benefits

Whereas MPI I/O handles one I/O call at a time, HDF5 can treat multiple I/O calls as
a logical entity and therefore can do optimizations that MPI I/O cannot or can provide
optimization hints to MPI I/O appropriate for the larger context.

HDF5 files are "self-describing," meaning that the files contain information fully
describing the typed data items. Self-describing files are portable between different
file systems.

2.4.3.2 References

There are no HDF5 man pages, but you can find additional information, including
example programs, at:

• The HDF5 home web at http://www.hdfgroup.org/.

• Introduction to HDF5 at http://www.hdfgroup.org/HDF5/doc/H5.intro.html.

• For descriptions of HDF5 I/O calls, see HDF5: API Specification Reference
Manual at http://www.hdfgroup.org/HDF5/doc1.6/RM_H5Front.html.

2.4.4 NetCDF-4 I/O Interface

NetCDF-4 is a platform-independent I/O interface that you can use to create, access,
and share array-oriented data. NetCDF-4 provides a higher level of data abstraction
than MPI I/O. NetCDF-4 views data as sets of related arrays. The NetCDF-4 data
model comprises variables, dimensions, attributes, and user-defined types. Datasets
can be stored in hierarchical groups.

The basic NetCDF-4 calls are:

• nc_put_var_*(), which writes a NetCDF-4 variable

• nc_put_arr_*(), which writes a NetCDF-4 attribute

• nc_get_var_*(), which reads a NetCDF-4 variable

• nc_get_arr_*(), which reads a NetCDF-4 attribute

NetCDF-4 supports collective and independent MPI I/O. The default is independent
I/O. To make writes to a variable collective, call the nc_var_par_access()
function.
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Note: NetCDF-4 uses HDF5 1.8.1 as the data storage layer for netcdf, so
technically HDF5 could be depicted as a separate layer in Figure 7. However, for
the purposes of this discussion, we will treat HDF5 as a component of NetCDF.

2.4.4.1 NetCDF-4 Benefits

NetCDF-4 files are "self-describing," meaning that the files contain information fully
describing the typed data items.

Use NetCDF-4 as an alternative to HDF5 if its simpler data model meets the needs of
the application. NetCDF-4 provides access to Parallel HDF5 I/O features. In addition,
HDF5 files produced by NetCDF-4 can be read by an HDF5 application.

2.4.4.2 References

NetCDF-4 information is available though the netcdf(3) man page and The
NetCDF Users Guide. This guide and additional NetCDF-4 documentation, including
example programs, is available at http://www.unidata.ucar.edu/software/netcdf/docs/.

20 S–2490–40

http://www.unidata.ucar.edu/software/netcdf/docs/


I/O Strategies [3]

There are several strategies you can use for moving data between memory and files.
In general, an application has one or more processes writing data to one or more
files. While almost any combination of the number of processes doing writes and the
number of application data files is possible, the four most common are:

• One File per Process: All Write

• Single Shared File: One Writes

• Single Shared File: All Write

• Single Shared File: Subset Writes

There is no best "one size fits all" solution. You may need to experiment with your
I/O strategy to achieve good performance and scaling, and even after you do so, you
may find that a strategy that works well under one set of circumstances may no longer
be optimal if the number of processes or the amount of data changes significantly.

3.1 One File per Process: All Write
With this strategy, each process writes to its own file, as shown in Figure 8. This is
a relatively simple I/O strategy to use, and the independent writes can perform well
because multiple OSTs can support parallel I/O to many separate files.

However, when all of the files are opened or closed, all file metadata resides on a
single MDT, creating a bottleneck, both for the application and for the entire file
system. If the number of processes is small, this is probably not a serious problem,
but this strategy does not scale well for a large number of processes, and if the ratio
of processes to OSTs is large, this can also overwhelm the OSTs even after the files
are opened. Also, if the entire set of files represents a single logical set of data,
postprocessing is probably necessary, adding to the overall time and cost. For these
reasons, we discourage the use of this strategy for large scale applications.
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Figure 8. One File per Process: All Write
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3.2 Single Shared File: One Writes
With this strategy, all processes involved in a write operation send data to one
process, which then writes the data to a single shared file. In Figure 9, P1-P3 send
data to P0. P0 sends all P0-P3 data to a single shared file.

This strategy uses data aggregation, a technique in which processes send their data to
another process, where it is combined and sent to the file as an aggregate.

The strategy is relatively simple. The advantages are that there is no MDT bottleneck,
and all the data is already consolidated into one file for subsequent use. There are
potentially several disadvantages:

• The writes are sequential, not parallel. Performance is limited by the write
bandwidth from one process. This strategy can perform better than all processes
doing their own writes if process 0 can combine the data into fewer and larger
contiguous pieces and if the aggregate size per write is approximately the size
of one stripe or less. However, if the aggregate size of the data spans multiple
stripes, better performance can be obtained with other strategies.

• The focus on system architecture has nothing to do with the problem the
application is trying to solve.

• This strategy may provide good I/O performance for one system architecture but
not another.
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Figure 9. Single Shared File: One Writes
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3.3 Single Shared File: All Write
With this strategy, all processes involved in a write operation send data to a single
shared file, as shown in Figure 10. This strategy requires extra work by the
application to maintain the separate file offsets for each process so one process does
not overwrite another's data. Because all processes are writing, parallel I/O can be
achieved, although with less-than-peak performance if the records from multiple
processes are being written to the same OSTs. For records significantly larger than a
stripe, performance can be very good.

Figure 10. Single Shared File: All Write
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3.4 Single Shared File: Subset Writes
With this strategy, a subset of all processes involved in a write operation sends data to
a single shared file, as shown in Figure 11.

This strategy also uses data aggregation. The advantages are that there is no MDT
bottleneck, and all the data is already consolidated into one file for subsequent use.
There are potentially several disadvantages:

• Assuming that all the processes were involved in the application computation, this
strategy is sometimes used to strike a balance between many processes writing
at the same time (with resulting frequent extent lock contention) and only one
process writing (with the resulting loss of parallel I/O).

The biggest difficulty with this approach is finding the best balance, which
probably changes with the problem size and almost certainly changes when
running the application on different computer systems with different I/O system
characteristics.

• The focus on system architecture has nothing to do with the problem the
application is trying to solve.

Figure 11. Single Shared File: Subset Writes
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3.5 Guidelines for I/O Strategies
As you develop your I/O strategy, consider the following guidelines.

• The "one file per process, all write" strategy can work well if you have a small
number of processes and the amount of data per process is large.

• The "single shared file, one writes" strategy can work well if the application
writes a small amount of data.

• The "single shared file, all write" strategy can work well if the amount of data per
process is large and the ratio of processes to OSTs is small.

• The "single shared file, subset writes" strategy can work well if there are a large
number of processes and there is a large amount of data, and if the appropriate
number for the subset is selected and the data is sent to the subset in the
appropriate way.

The difficulty with the above guidelines is that "small" and "large" are subjective
terms and difficult to quantify, and even if you succeed in choosing and tuning a
strategy for your application that works well under one set of circumstances, that
strategy may no longer be optimal if the number of processes or the amount of data
changes significantly. For these reasons we recommend using the "single shared file,
all write" strategy and MPI collective I/O calls, as described in Chapter 4, Parallel I/O
With MPI on page 27 and Chapter 5, Benchmarks on page 43, to let the MPI I/O
library choose the appropriate subset of processes and optimize the I/O patterns.
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This chapter describes the steps to take to use collective MPI I/O. Collective MPI I/O
is defined by the MPI Standard and has these characteristics:

• A file is opened collectively by a group of processes.

• A file is partitioned among processes of this group.

• All collective I/O calls on a file are collective over this group.

• An MPI file is an ordered collection of typed data items.

• Data access and positioning is done in terms of MPI datatypes, which can be
any basic datatype or derived datatype.

• Derived datatypes can be constructed using any of the MPI datatype constructor
routines.

• The physical layout of data in process memory or in a file is described in terms
of the datatypes.

• A filetype defines a template for accessing data in a file and is specified in terms
of basic or derived datatypes.

• A file view defines the current set of data visible to and accessible to each process.

• The file view can be changed during program execution to accommodate different
access patterns.

See the MPI Standard chapter 9 for a more complete definition of MPI I/O terms.

Independent MPI I/O shares many of the above characteristics, but because we
encourage the use of collective MPI I/O, we do not draw the distinctions here.

When you use collective I/O, you use the "shared file, all write" strategy. However,
the library can optimize operations dynamically and use the "shared file, subset
writes" or "shared file, one writes" strategy if it improves performance.

Because you can use derived datatypes to define the physical layout of data in both
process memory and the file, data can be moved between memory and a file in terms
of the datatype, relieving the program from directly dealing with the details of the
data positions and contiguous data sizes on each I/O call. Once the derived datatypes
are defined and committed, the library handles the details for the program.
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Using datatypes and complementary file views, the processes doing I/O can achieve
global data distribution in a single collective I/O call.

4.1 Basic Program Steps for Collective MPI I/O
Follow these steps for programming collective MPI I/O.

Note: The following steps and examples are provided in C. For comparable Fortran
or C++ information, see the man pages.

1. Optionally, create an info object.

The MPI_Info_create() call creates an opaque info object that is a means
of passing a variety of information to the library when the file is opened. This is
required if file hints will be passed to the library through MPI function calls.

The synopsis is:

int MPI_Info_create(MPI_Info *info)

2. Optionally, add information to the info object.

The MPI_Info_set() call adds information to the info object created in step 1
in the form of key,value pairs. These information pairs are used by the library at
various stages of the I/O process. Most of them are optimization hints, including
striping information. Pairs not understood by the library are ignored. For more
information about hints, see and the intro_mpi(3) man page.

The synopsis is:

int MPI_Info_set(MPI_Info info, char *key, char *value)

3. Optionally, delete the file.

The MPI_File_delete() call deletes a named file if it exists. Striping
information cannot be changed on an existing file, so to set the stripe count (and
stripe size) for the amount of parallelism you want to achieve, the file must be
deleted if it exists.

The synopsis is:

int MPI_File_delete(char *filename, MPI_Info info)

4. Open the file.

The MPI_File_open() call opens the file. All processes in the collective I/O
group (that is, all processes in the communicator group comm) must make this
call. Often, this group would be MPI_COMM_WORLD. The file's name and the
access modes (read only, write only, read/write, and so forth) are specified. If an
info object has been created, it is also specified. Otherwise, the info argument
is MPI_INFO_NULL.
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The synopsis is:

int MPI_File_open(MPI_Comm comm, char *filename, int amode,
MPI_Info info, MPI_File *fh)

5. Optionally, create a datatype to describe the physical layout of data in memory.

The purpose of this step is to describe the data so that all the data to be transferred
to or from memory at this point in the application can be done with one I/O
call rather than a loop of I/O calls. Doing this in one call allows the library to
optimize in ways not possible with many separate calls.

MPI provides a set of datatype constructors that support describing any arbitrary
physical layout of data, either in memory or a file. The format of these
constructors is MPI_Type_xxx() and MPI_Type_create_xxx(). Choose
Datatype Constructors to Match Your Data Model on page 31 describes many of
them and shows how to use the appropriate constructor to match the data model
of the application.

A datatype constructor is not needed if the data to be transferred is a contiguous
region of a basic datatype.

6. If a datatype was created, commit it.

Datatype constructors can be applied recursively to build up arbitrarily complex
datatypes, so there may be intermediate datatypes that are only a step toward the
final datatype. Therefore, it is not until MPI_Type_commit() is called does
the library record the information for use in I/O calls.

The synopsis is:

int MPI_Type_commit(MPI_Datatype *datatype)

7. Optionally, create a datatype to describe the physical layout of data in the file.

This is similar to the previous create-datatype step, except it applies to the
physical layout of data in the file. The layouts in memory and in the file may
match, but they are not required to do so. If they do match, the same datatype can
be used for both cases, and this step is not needed.

8. If a datatype was created for the file, commit it.

9. Set each process's view of the file.

The MPI_File_set_view() call defines the current set of data in the file that
is visible to and accessible to each process.

The synopsis is:

int MPI_File_set_view(MPI_File mpi_fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype,
char *datarep, MPI_Info info)
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The disp argument specifies the start of each process's view within the file and
must be different for each process. The etype argument specifies the unit of data
in the file, and the filetype argument specifies the datatype for the distribution of
the etypes in the file. The datarep argument would normally be native if the
data is created on and used on the same homogeneous system. The info argument
can be the same info object used for the open call or can be different. Some of the
information specified in the info object has no effect except at file open time.

10. Read data from a file or write data to a file.

The MPI_File_read_all() call reads data from the specified
file into process memory according to the call arguments and also the
information previously passed to the library by the MPI_File_open() and
MPI_File_set_view() calls.

The synopsis is:

int MPI_File_read_all(MPI_File mpi_fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Similarly, the MPI_File_write_all() call writes data from process
memory to the specified file according to the arguments in this call and also the
information previously passed to the library by the MPI_File_open() and
MPI_File_set_view() calls.

The synopsis is:

int MPI_File_write_all(MPI_File mpi_fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

The flow of data between memory and the file for a single read or write call can
be quite complex. However, the MPI I/O library handles this complexity and can
often optimize it in significant ways, making the earlier steps worthwhile.

11. Close the file.

The MPI_FIle_close() call causes all previous writes to the file to be
transferred to the storage devices and then closes the file.

The synopsis is:

int MPI_File_close(MPI_File *mpi_fh)

The example programs and code snippets that follow will show how this information
is built up and made visible to the library. Discussion of the example code will
describe some of the ways the library uses the information.
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4.2 Choose Datatype Constructors to Match Your Data Model
Basic Program Steps for Collective MPI I/O on page 28 describes the basic steps
for using collective MPI I/O. This section gives a brief description of most of the
datatype constructors, more specific guidelines for choosing the datatype constructors
that best match the data model of your application, and code examples for some of
these.

Note: Descriptions and guidelines for using the
MPI_Type_create_darray() and MPI_Type_create_subarray()
datatype constructors are deferred to a future release of this guide.

An MPI application programmer probably already uses datatype constructors for
moving data from one process's memory to another. The concept of using derived
datatypes for moving data from process's memory to a file may be new, but there
is no difference conceptually.

Datatypes describing multidimensional arrays of any size and shape and with
elements of any datatype can be created using the new type created by one
constructor call as an argument to another constructor call.

The variety of datatype-related calls suggests many possible combinations. In fact,
with MPI_Type_create_struct(), any arbitrary layout can be described. The
other calls are easier to use and can be used when the layout is simpler or more
regular.

After the datatype is created, the MPI_Type_commit() routine must be called for
the new datatype. This allows the implementation to store all the layout information
for subsequent use in moving data and potentially for optimization of the movement.

See the MPI Standard or the other MPI references for more complete description.

4.2.1 Create a Contiguous Datatype

The MPI_Type_contiguous() datatype constructor can be used for a contiguous
1-D array that is distributed across the memory of all the processes. This constructor
can also be used for building up a multidimensional array, as shown in a later
example.

This first code example shows all of the basic collective MPI I/O steps, as described
above, that would be used in a parallel application. Comments in the code describe
each step. To make this example self-contained, an input data file is created first. You
can copy from this example the parts that you need for your application.
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Example 4. Distributed contiguous 1-D array

Source code of basic.c:

/* Include Files */
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include "mpi.h"

/* For this self-contained example, the following macros are defined.
* They can be defined with different values here. Or the example could
* be expanded to take any of these as command line arguments. Of course
* a real application would have its own set of variables and values. */

#define MY_INPUT_FILE "my_input" /* name of input datafile */
#define MY_RESULTS_FILE "my_results" /* name of output results file */
#define MY_CHECKPOINT_FILE "my_checkpoint" /* name of checkpoint file */
#define LOCAL_SIZE 1000000L /* size of local array in ints */
#define STRIPE_COUNT "4" /* must be an ascii string */
#define STRIPE_SIZE "1048576" /* must be an ascii string */
#define X_DIM 30000 /* size of 1st dimension */
#define Y_DIM 20000 /* size of 2nd dimension, if any */
#define Z_DIM 10000 /* size of 3rd dimension, if any */

int
create_my_input_file(char *file_name, int local_size, int init_value,

int my_rank, int comm_size)
{

MPI_File fh;
MPI_Info info;

int *local_array;
int size;
int rc;
int i;
double t0,t1;

/* Delete any existing file so striping can be set. Striping cannot
* be changed on an existing file. */

rc = MPI_File_delete(file_name, MPI_INFO_NULL);

/* Create a local array that will contain this process's data.
* In this case, every local array is the same size, though that
* is not necessary for collective I/O to work. */

local_array = (int*)malloc((size_t)(local_size * sizeof(int)));
if (local_array == NULL) {
return -1;

}

/* Initialize the array with data that will serve as the input data. */
for (i = 0; i < local_size; i++) {
local_array[i] = init_value + i;

}

/* Set the stripe_count and stripe_size, that is, the striping_factor
* and striping_unit. Both keys and values for MPI_Info_set must be
* in the form of ascii strings. */
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MPI_Info_create(&info);
MPI_Info_set(info, "striping_factor", STRIPE_COUNT);
MPI_Info_set(info, "striping_unit", STRIPE_SIZE);

// MPI_Info_set(info, "romio_cb_write", "disable");

/* All processes in the application open the file. The info object
* sets the striping information for the file. */

MPI_Barrier(MPI_COMM_WORLD);
t0 = MPI_Wtime();
rc = MPI_File_open(MPI_COMM_WORLD, file_name,

MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

/* The return code will be MPI_SUCCESS if the open was successful.
* There are a number of options for handling unsuccessful calls.
* We will return a negative status for the caller to handle. */

if (rc != MPI_SUCCESS) {
return -1;

}

/* Write the file as a collective call, with every process writing
* a part of the file. */

rc = MPI_File_set_view(fh, my_rank * (MPI_Offset)local_size * sizeof(int),
MPI_INT, MPI_INT, "native", info);

rc = MPI_File_write_all(fh, local_array, local_size, MPI_INT,
MPI_STATUS_IGNORE);

if (rc != MPI_SUCCESS) {
return -1;

}

/* Close the file. */
rc = MPI_File_close(&fh);

MPI_Barrier(MPI_COMM_WORLD);
t1 = MPI_Wtime();

/* Print file creation information. */
if (my_rank == 0) {
MPI_Offset size = comm_size * (MPI_Offset)LOCAL_SIZE * sizeof(int);
double time = t1-t0;
double mibps = (size/time)/1048576.0;
printf("input data file '%s' created;\n"

" file_size=%ld create_time=%f6.2 MiB/sec=%f\n",
MY_INPUT_FILE, size, time, mibps);

}

return 0;
}

int main(int argc, char **argv)
{

MPI_Aint lb, extent;
MPI_Datatype etype, memtype, filetype, contig;
MPI_Offset disp;
MPI_File in_fh;
MPI_File out_fh;
MPI_Info info;
int buf[LOCAL_SIZE];
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int my_rank;
int comm_size;
double t0,t1;
int stripe_count;
int init_value;
int rc;

/* MPI Initialization */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

/* A real application would likely already have an input data file
* but for a self-contained example, we will create one and close it. */

init_value = my_rank * LOCAL_SIZE;
rc = create_my_input_file(MY_INPUT_FILE, LOCAL_SIZE, init_value,

my_rank, comm_size);
if (rc != 0) {
fprintf(stderr, "could not create input file\n");
MPI_Abort(MPI_COMM_WORLD, 1);

}

/* Create an info object for hints. Note that striping can't be
* changed on an existing file. */

MPI_Info_create(&info);
MPI_Info_set(info, "romio_cb_read", "enable");

/* Open the input data file. */

rc = MPI_File_open(MPI_COMM_WORLD, MY_INPUT_FILE, MPI_MODE_RDONLY,
info, &in_fh);

if (rc != MPI_SUCCESS) {
fprintf(stderr, "could not open input file\n");
MPI_Abort(MPI_COMM_WORLD, 2);

}

/* Construct a datatype for distributing the input data across all
* processes. */

MPI_Type_contiguous(LOCAL_SIZE, MPI_INT, &contig);
MPI_Type_commit(&contig);

/* Set the file view so that each process gets its portion of the
* input data. */

disp = my_rank * LOCAL_SIZE * sizeof(int);
rc = MPI_File_set_view(in_fh, disp, contig, contig, "native", info);
if (rc != MPI_SUCCESS) {
fprintf(stderr, "error setting file view on input file\n");
MPI_Abort(MPI_COMM_WORLD, 3);

}

/* Read the input data file. Since we created a contiguous datatype
* the full size of each process's local data, the count is 1. */

rc = MPI_File_read(in_fh, buf, 1, contig, MPI_STATUS_IGNORE);
if (rc != MPI_SUCCESS) {
fprintf(stderr, "error reading input file\n");
MPI_Abort(MPI_COMM_WORLD, 3);

}
MPI_File_close(&in_fh);
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/* Compute. This is where you do your science. In this simple
* example, we will just check that the input was read correctly and
* then multiply by 2. */

/* At some point, or perhaps at multiple time steps, calculated results
* would be written out. And perhaps checkpoint files would periodically
* written out. In this simple example, we will write results just
* once. */

/* Delete the output file if it exists so that striping can be set
* on the output file. */

rc = MPI_File_delete(MY_RESULTS_FILE, MPI_INFO_NULL);

/* Set the striping */

/* Open the results file. */

rc = MPI_File_open(MPI_COMM_WORLD, MY_RESULTS_FILE, MPI_MODE_WRONLY |
MPI_MODE_CREATE, MPI_INFO_NULL, &out_fh);

if (rc != MPI_SUCCESS) {
fprintf(stderr, "could not open results file\n");
MPI_Abort(MPI_COMM_WORLD, 3);

}

/* Set the file view for the output file. In this example, we will
* use the same contiguous datatype as we used for reading the data
* into local memory. A better example would be to write out just
* part of the data, say 4 contiguous elements followed by a gap of
* 4 elements, and repeated. */

disp = my_rank * LOCAL_SIZE * sizeof(int);
MPI_File_set_view(out_fh, disp, contig, contig, "native", MPI_INFO_NULL);
if (rc != MPI_SUCCESS) {
fprintf(stderr, "error setting view on results file\n");
MPI_Abort(MPI_COMM_WORLD, 4);

}

/* MPI Collective Write */
t0 = MPI_Wtime();
rc = MPI_File_write_all(out_fh, buf, 1, contig, MPI_STATUS_IGNORE);
if (rc != MPI_SUCCESS) {
fprintf(stderr, "error writing results file\n");
MPI_Abort(MPI_COMM_WORLD, 5);

}

/* Close Files */
MPI_File_close(&out_fh);
t1 = MPI_Wtime();

/* Print time info. */
if (my_rank == 0) {
MPI_Offset size = comm_size * (MPI_Offset)LOCAL_SIZE * sizeof(int);
double time = t1-t0;
double mibps = (size/time)/1048576.0;
printf("results file '%s' written;\n"

" file_size=%ld write_time=%f6.2 MiB/sec=%f\n",
MY_RESULTS_FILE, size, time, mibps);
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}

/* MPI Finalize */
MPI_Finalize();

return 0;
}

Compile and run program basic:

% cc -o basic basic.c
% aprun -n 4 ./basic
input data file 'my_input' created;
file_size=16000000 create_time=0.0256586.2 MiB/sec=594.696055

results file 'my_results' written;
file_size=16000000 write_time=0.0254666.2 MiB/sec=599.178003

Application 1030961 resources: utime 0, stime 0

Performance for this I/O pattern can be quite good with collective MPI I/O. Whatever
the size of the 1-D array, the collective buffering optimization can reorder the data in
memory to do very efficient I/O.

Large records, no gaps (see Large Records with No Gaps on page 45).

Small records, no gaps (see Small Records with No Gaps on page 47).

4.2.2 Create a Noncontiguous Datatype with Uniform Stride

The MPI_Type_vector() datatype constructor can be used for a distributed
non-uniformly segmented 1-D array.

Small records, small gaps (see Small Records with Small Gaps on page 48).

4.2.3 Create a Noncontiguous Datatype with Non-uniform Stride

There are two noncontiguous datatype constructors for non-uniform stride:

• Datatypes with non-uniform stride. The MPI_Type_indexed() datatype
constructor can be used for a distributed noncontiguous 2-D array with ghost cells
(uniformly domain-decomposed multidimensional arrays).

Large records, large gaps (see Large Records with Large Gaps on page 46).

Small records, small gaps (see Small Records with Small Gaps on page 48).

• Datatypes with non-uniform stride with an array of different datatypes as
inputs. The MPI_Type_create_struct() can be used for a distributed
noncontiguous 3-D array.

Small records, large gaps (see Small Records with Large Gaps on page 49).
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4.3 Collective Buffering
With collective MPI I/O, by default you use a technique called collective buffering.
As shown in Figure 12, collective buffering consolidates I/O requests for all
processes. In this example, the MPI I/O library chooses P0 and P2 as aggregators.
All processes transfer data to the appropriate aggregator, based on the record lengths
and offsets.

Figure 12. Aggregating Data

P3P1P0
Aggregator 0

P2
Aggregator 1

After the consolidation, only the aggregators perform I/O, as shown in Figure 13. P0)
writes data to stripes 0, 2, 4, and 6. In parallel, P2 writes data to stripes 1, 3, and 5.

Figure 13. Aggregators Writing Data

P0
Aggregator 0

P2
Aggregator 1

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB 5 MiB 6 MiB 7 MiB

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 Stripe 6

You do not have to do anything to designate a process as an aggregator; the MPI
I/O interface does that for you. The interface sets the number of aggregators to the
stripe count. This allows the aggregators to use Lustre in an efficient manner, because
writes to a shared file are stripe aligned and therefore do not compete for the same
physical I/O block or OST.
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4.4 Collective I/O Guidelines
For most large-file writes (1 GB or greater), MPI I/O collective buffering gives the
best results. However, the overhead associated with dividing the I/O workload can
in some cases exceed the time otherwise saved by using this method. Here are
guidelines to help you decide when to use collective buffering:

• For large unaligned writes to sometimes the same stripes, use collective buffering.

• For small writes to often the same stripe or stripes, use collective buffering.

• For small writes to different stripes, do not use collective buffering.

• For reads, the only time collective buffering helps is if there is a significant
amount of data still in cache from a previous write. This is not a common
occurrence for the large scale jobs where I/O time is a significant issue.

• When scaling to a large number of processes (that is, more than 10,000), two or
three aggregators per OST may improve performance.

• If the data access pattern for a file switches during application execution from
a pattern that benefits from collective buffering to a pattern where collective
buffering is detrimental, then change the hint value for collective buffering during
execution between enable and disable as follows:

% setenv MPICH_MPIIO_HINTS myfile:romio_cb_write=disable

If you do this, also set romio_no_indep_rw to false.

• If an application's I/O strategy is to have a subset of the processes act as writers
and only the writer processes open the file, then the maximum number of
aggregators allowed is the number or writers. If there are more OSTs available
than there are writers, set the stripe count to an integer multiple of the number of
writers.

4.5 MPI I/O Optimization Hints
MPI I/O optimization hints can be passed in by two methods: either by calling
MPI_Info_set in the application code, or by setting the MPICH_MPIIO_HINTS
environment variable. If set, the environment variable overrides the default
value of one or more MPI I/O hints, and also overrides any values set using
MPI_Info_set. The new values apply to the file the next time it is opened using
an MPI_File_open() call.

Note: For more information about MPI-related environment variables, see the
intro_mpi(3) man page.
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After the MPI_File_open() call, subsequent MPI_Info_set calls can
be used to pass new MPI I/O hints that take precedence over some of the
environment variable values. Other MPI I/O hints such as striping_factor,
striping_unit, cb_nodes, and cb_config_list cannot be changed after
the MPI_File_open() call, as these are evaluated and applied only during the
file open process.

An MPI_File_close call followed by an MPI_File_open call can be used to
restart the MPI I/O hint evaluation process.

The syntax for this environment variable is a comma-separated list of specifications.
Each individual specification is a pathname_pattern followed by a colon-separated
list of one or more key=value pairs. In each key=value pair, the key is
the MPI-IO hint name, and the value is its value as it would be coded for an
MPI_Info_set library call.

For example:

MPICH_MPIIO_HINTS=spec1[,spec2,...]

Where each specification has the syntax:

pathname_pattern:key1=value1[:key2=value2:...]

The pathname_pattern can be an exact match with the filename argument used in the
MPI_File_open() call or it can be a pattern as described below.

When a file is opened with MPI_File_open(), the list of hint specifications
in the MPICH_MPIIO_HINTS environment variable is scanned. The first
pathname_pattern matching the filename argument in the MPI_File_open() call
is selected. Any hints associated with the selected pathname_pattern are applied
to the file being opened. If no pattern matches, no hints from this specification are
applied to the file.

The pathname_pattern follows standard shell pattern-matching rules with these
meta-characters:

Pattern Description

* Match any number of characters

? Match any single character

[a-b] Match any single character between a and b, inclusive

\ Interpret the meta-character that follows literally

The simplest pathname_pattern is *. Using this results in the specified hints being
applied to all files opened with MPI_File_open(). Use of this wildcard is
discouraged because of the possibility that a library linked with the application may
also open a file for which the hints are not appropriate.
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The following example shows how to set hints for a set of files. The final specification
in this example, for file /scratch/user/me/dump.*, has two key=value
pairs.

MPICH_MPIIO_HINTS=file1:direct_io=true,file2:romio_ds_write=disable,
/scratch/user/me/dump.*:romio_cb_write=enable:cb_nodes=8

The following MPI-IO key values are supported on Cray systems.

striping_factor

Specifies the number of Lustre file system stripes (stripe count) to
assign to the file. This has no effect if the file already exists when
the MPI_File_open() call is made. File striping cannot be
changed after a file is created. Currently this hint applies only when
MPICH_MPIIO_CB_ALIGN is set to 2.

Default: the default value for the Lustre file system, or the value for
the directory in which the file is created if the lfs setstripe
command was used to set the stripe count of the directory to a value
other than the system default.

striping_unit

Specifies in bytes the size of the Lustre file system stripes (stripe
size) assigned to the file. This has no effect if the file already exists
when the MPI_File_open() call is made. File striping cannot be
changed after a file is created. Currently this hint applies only when
MPICH_MPIIO_CB_ALIGN is set to 2.

Default: the default value for the Lustre file system, or the value for
the directory in which the file is created if the lfs setstripe
command was used to set the stripe size of the directory to a value
other than the system default.

direct_io Enables the O_DIRECT mode for the specified file. The
user is responsible for aligning the write or read buffer on a
getpagesize() boundary. MPI-IO checks for alignment and
aborts if it is not aligned. Valid values are true or false.

Default: false.

romio_cb_read

Enables collective buffering on read when collective IO operations
are used. Valid values are enable, disable, and automatic. In
automatic mode, whether or not collective buffering is done is based
on runtime heuristics. When MPICH_MPIIO_CB_ALIGN is set to
2, the heuristics favor collective buffering.

Default: automatic.
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romio_cb_write

Enables collective buffering on write when collective IO operations
are used. Valid values are enable, disable, and automatic. In
automatic mode, whether or not collective buffering is done is based
on runtime heuristics. When MPICH_MPIIO_CB_ALIGN is set to
2, the heuristics favor collective buffering.

Default: automatic.

cb_buffer_size

Sets the buffer size in bytes for collective buffering.

When MPICH_MPIIO_CB_ALIGN is set to 2, this hint has
no effect because the buffer size is equal to the stripe size
(striping_unit).

Default: 16777216.

cb_nodes Specifies the number of aggregators used to perform the physical I/O
for collective I/O operations when collective buffering is enabled. On
multi-core nodes, all cores share the same node name.

When MPICH_MPIIO_CB_ALIGN is set to 2, cb_nodes should
be set the same as striping_factor (in other words, to the stripe count)
to get the maximum benefit of Lustre stripe alignment.

Default: striping_factor when MPICH_MPIIO_CB_ALIGN
is set to 2, or the number of XT compute nodes when
MPICH_MPIIO_CB_ALIGN is set to 0 or 1.

cb_config_list

Specifies by name which nodes are to serve as aggregators. The
syntax for the value is:

#name1:maxprocesses[,name2:maxprocesses,...]#

Where name is either * (match all node names) or the name returned
by MPI_Get_processor_name, and maxprocesses specifies the
maximum number of processes on that node to serve as aggregators.
If the value of the cb_nodes hint is greater than the number of
XT compute nodes, the value of maxprocesses must be greater
than 1 in order to assign the required number of aggregators.
When MPICH_MPIIO_CB_ALIGN is set to 2, the aggregators
are assigned using a round-robin method across XT compute
nodes. When MPICH_MPIIO_CB_ALIGN is set to 0 or 1, up to
maxprocesses aggregators are assigned to the first node, and so on
for each node as needed.
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The pair of # characters beginning and ending the list are
not part of the normal MPIIO hint syntax but are required.
Because colon (:) characters are used in both this list and in
the MPICH_MPIIO_HINTS environment variable syntax, the #
characters are required in order to determine the meaning of colon
(:) character.

This value cannot be changed after the file is opened.

Default: *:* when MPICH_MPIIO_CB_ALIGN is set to 2, or *:1
when MPICH_MPIIO_CB_ALIGN is set to 0 or 1.

romio_no_indep_rw

Specifies whether deferred open is used. Valid values are true and
false.

Default: false.

romio_ds_read

Specifies if data sieving is to be done on read. Valid values are
enable, disable, and automatic.

Default: disable when MPICH_MPIIO_CB_ALIGN is set to 2,
or automatic when MPICH_MPIIO_CB_ALIGN is set to 0 or 1.

romio_ds_write

Specifies if data sieving is to be done on write. Valid values are
enable, disable, and automatic.

Default: disable when MPICH_MPIIO_CB_ALIGN is set to 2,
or automatic when MPICH_MPIIO_CB_ALIGN is set to 0 or 1.

ind_rd_buffer_size

Specifies in bytes the size of the buffer to be used for data sieving
on read.

Default: 4194304

ind_wr_buffer_size

Specifies in bytes the size of the buffer to be used for data sieving
on write.

Default: 524288
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Cray has extensively tested the I/O methods described in this book using the IOR
(Interleaved or Random) benchmark. IOR, developed by Lawrence Livermore
National Laboratories, tests I/O performance using POSIX I/O and MPI I/O interfaces
and various access patterns. The test creates a new file, writes data to it, then reads
the data back.

We show IOR results here instead of results for real HPC applications because with
IOR, data access patterns can be clearly defined by the input parameter values, and
these patterns represent a wide range of real applications. These results show that the
I/O strategy and data access patterns have a significant affect on I/O performance,
sometimes by two orders of magnitude.

The system configuration and IOR parameter values are given for the various
results. You can, if you wish, reproduce these IOR results on similar Cray XT
systems—scaling up or down to larger or smaller configurations and parameter
values—and then compare results with other computer systems.

We ran these benchmarks on a dedicated Cray XT5 system, using eight 8-core nodes
(64 cores). The Lustre file system has one DDN 9550 controller and 16 OSTs. All of
the OSTs were approximately 20% full.

We have also run benchmarks on larger and smaller Cray XT4 and Cray XT5
systems, and the relative results are approximately the same as shown in the graphs
below for this configuration.
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5.1 IOR Requirements
There are two requirements that need to be met in order to obtain meaningful
bandwidths:

• There must be a sufficient number of processes writing data relative to the
number of OSTs. Generally, 2-4 processes per OST will maximize the file
system bandwidth. Adding more processes does not increase bandwidth and
may decrease it somewhat. So a job running with many times more processors
than OSTs may not attain peak bandwidth, but if you use collective buffering,
performance stays near peak at even very large process counts.

• The total file size must be large enough to eliminate any benefits of caching in
either the compute node kernels or the file system. A file that is larger than the
total amount of memory on all the compute nodes used by the application meets
this requirement.

5.2 IOR Writes
The following graphs show the results of the IOR benchmark write operations. The
labels are:

• POSIX: results for IOR using POSIX I/O

• MPI I/O Ind: results for IOR using independent MPI I/O

• MPI I/O Coll No Buf: results for IOR using collective MPI I/O without
collective buffering

• MPI I/O Coll Buf: results for IOR using collective MPI I/O with collective
buffering

Record sizes are in power-of-10 units, KB and MB. We use these units because real
applications rarely have power-of-2 sizes and file offsets, so power-of-10 units are
more realistic for illustrating relative performance.

The absolute value of the performance results is not as significant as the relative
values. These results are from a file system with just one disk controller. Results
on file systems with multiple disk controllers usually have proportionately better
performance.
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5.2.1 Large Records with No Gaps

This set of results shows that collective buffering improves performance significantly
for this data access pattern. The key factors are:

• The size of the records and the file offsets for the records are not set to nicely
align with Lustre physical block boundaries. Therefore, Lustre has to serialize
some of the write operations. But with collective buffering, the MPI I/O layer
reorganizes the data access pattern so all the write operations are aligned.

• There are no gaps between the collective set of records from all the processes, so
with collective buffering, chunks of data from different processes can be merged
into larger regions, thus reducing the number of chunks of data being written.

• The records are large relative to stripe size, so for the total amount of data written,
the overhead of doing collective buffering is quite small.

The POSIX, independent MPI I/O, and collective MPI I/O without collective
buffering tests all performed about the same because the path through the MPI I/O
layer is short for independent MPI I/O and collective MPI I/O without collective
buffering.

The total file size for this test was 191 GB.

Figure 14. Benchmark: Large Records with No Gaps
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5.2.2 Large Records with Large Gaps

The performance of POSIX, independent MPI I/O, and collective MPI I/O without
collective buffering is greater than the same modes in the previous "no gaps" case
because the gaps between the records are large enough that there is significantly less
contention for the same physical block at any given time.

The performance of collective MPI I/O with collective buffering is less than for the
same mode with no gaps because the merging of adjacent records does not occur. As
a result, after the data is reorganized, there are some chunks of data less than a full
stripe to be written on any given call.

The total file size for this test was 191 GB.

Figure 15. Benchmark: Large Records with Large Gaps
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5.2.3 Small Records with No Gaps

This is the most dramatic difference between using collective buffering and not using
collective buffering. Given this data access pattern, without collective buffering, many
processes contend for the same stripe and often the same physical block at the same
time. This contention makes for very low write bandwidth. With collective buffering,
the contention is completely eliminated. Also, because there are no gaps, collective
buffering can merge adjacent records.

The bandwidth for collective buffering mode is low compared to the "large record"
cases because, with small record sizes and many I/O calls, the overhead on each I/O
call for collective buffering becomes significant.

The total file size for this test was 19 GB. We used the smaller file size because the
bandwidth is so low that run time is prohibitive at 191 GiB.

Figure 16. Benchmark: Small Records with No Gaps
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5.2.4 Small Records with Small Gaps

Without collective buffering, the large number of relatively small records results
in much call overhead and lock contention. With collective buffering, the lock
contention is eliminated, but the call overhead and the additional collective buffering
overhead is significant. It is best to avoid this data access pattern if possible.

The total file size for this test was 19 GB. We used the smaller file size because the
bandwidth is so low that run time is prohibitive at 191 GiB.

Figure 17. Benchmark: Small Records with Small Gaps
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5.2.5 Small Records with Large Gaps

The large gaps between records means that there is little lock contention. With
collective buffering, there is overhead for the many small calls, but little or no gain is
realized by reducing lock contention or merging adjacent records.

The total file size for this test was 19 GB. We used the smaller file size because the
bandwidth is so low that run time is prohibitive at 191 GiB.

Figure 18. Benchmark: Small Records with Large Gaps
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Remember, there is no "one size fits all" approach to improving MPI I/O. However,
the following guidelines should give you a reasonable expectation of what is possible:

• Modifying an existing application or writing a new application to use collective
I/O optimization techniques is not necessarily easy, but the payoff can be
substantial. On real applications, I/O performance improvements of 2, 4, and
even 20 times have been seen.

• The preferred I/O interface is MPI collective I/O with collective buffering.

• IOR benchmark results show significant performance advantages for collective
buffering over other strategies. For all tested patterns except small records with
large gaps, the MiBs/second transfer rate for collective buffering exceeds that of
the other strategies by factors of 50-1000%.
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Glossary

compute node

A node that runs application programs. Compute nodes have one or more cores (also
referred to as CPUs).

KB (Kilobyte)

A decimal multiple equal to 103 bytes (1,000 bytes).

KiB (Kibibyte)

A binary multiple equal to 210 bytes (1,024 bytes).

MB (Megabyte)

A decimal multiple equal to 106 bytes (1,000,000 bytes).

metadata target (MDT)

A Lustre representation of a physical disk containing metadata about user files.

MiB (Mebibyte)

A binary multiple equal to 220 bytes (1,048,576 bytes).

OST (object storage target)

A Lustre representation of a physical disk containing user files.

process

An instance of an application executable. Each process runs on a compute node core.
A process is also referred to as a processing element.

striping_factor

The MPI term for stripe count.
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striping_unit

The MPI term for stripe size.
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